Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests

Eric J Hegedus

Correspondence to

High Point University Physical Therapy, 833 Montlieu Ave, High Point, North Carolina 27262, USA; ehegedus@highpoint.edu

Received 21 February 2012 Accepted 21 May 2012 Published Online First 7 July 2012

ABSTRACT

Objective To update our previously published systematic review and meta-analysis by subjecting the literature on shoulder physical examination (ShPE) to careful analysis in order to determine each tests clinical utility.

Methods This review is an update of previous work, therefore the terms in the Medline and CINAHL search strategies remained the same with the exception that the search was confined to the dates November, 2006 through to February, 2012. The previous study dates were 1966 – October, 2006. Further, the original search was expanded, without date restrictions, to include two new databases: EMBASE and the Cochrane Library. The Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS 2) tool was used to critique the quality of each new paper. Where appropriate, data from the prior review and this review were combined to perform meta-analysis using the updated hierarchical summary receiver operating characteristic and bivariate models.

Results Since the publication of the 2008 review, 32 additional studies were identified and critiqued. For subacromial impingement, the meta-analysis revealed that the pooled sensitivity and specificity for the Neer test was 72% and 60%, respectively, for the Hawkins-Kennedy test was 79% and 59%, respectively, and for the painful arc was 53% and 76%, respectively. Also from the meta-analysis, regarding superior labral anterior to posterior (SLAP) tears, the test with the best sensitivity (52%) was the relocation test; the test with the best specificity (95%) was Yergason's test; and the test with the best positive likelihood ratio (2.81) was the compression-rotation test. Regarding new (to this series of reviews) ShPE tests, where meta-analysis was not possible because of lack of sufficient studies or heterogeneity between studies, there are some individual tests that warrant further investigation. A highly specific test (specificity > 80%, LR+ \ge 5.0) from a low bias study is the passive distraction test for a SLAP lesion. This test may rule in a SLAP lesion when positive. A sensitive test (sensitivity > 80%, LR $- \leq$ 0.20) of note is the shoulder shrug sign, for stiffnessrelated disorders (osteoarthritis and adhesive capsulitis) as well as rotator cuff tendinopathy. There are six additional tests with higher sensitivities, specificities, or both but caution is urged since all of these tests have been studied only once and more than one ShPE test (ie, active compression, biceps load II) has been introduced with great diagnostic statistics only to have further research fail to replicate the results of the original

authors. The belly-off and modified belly press tests for subscapularis tendinopathy, bony apprehension test for bony instability, olecranon-manubrium percussion test for bony abnormality, passive compression for a SLAP lesion, and the lateral Jobe test for rotator cuff tear give reason for optimism since they demonstrated both high sensitivities and specificities reported in low bias studies. Finally, one additional test was studied in two separate papers. The modified dynamic labral shear test, may be diagnostic of labral tears in general, but be sensitive for SLAP lesions specifically.

Conclusion Based on data from the original 2008 review and this update, the use of any single ShPE test to make a pathognomonic diagnosis cannot be unequivocally recommended. There exist some promising tests but their properties must be confirmed in more than one study. Combinations of ShPE tests provide better accuracy, but marginally so. These findings seem to provide support for stressing a comprehensive clinical examination including history and physical examination. However, there is a great need for large, prospective, well-designed studies that examine the diagnostic accuracy of the many aspects of the clinical examination and what combinations of these aspects are useful in differentially diagnosing pathologies of the shoulder.

INTRODUCTION

In 2006, we reviewed shoulder physical examination (ShPE) and in 2008 our work was published in this journal.¹ This publication was followed by a series of either similar or otherwise redundant publications, addressing all or dedicated pathognomic components of shoulder testing.²⁻⁷ The majority of those subsequent articles did not meta-analyse the ShPE test's accuracy, evaluate risk of bias among the studies, or identify studies unique to our 2008 publication.¹ The fact that so many review articles analysed the diagnostic accuracy of clinical shoulder tests in a period of three years speaks to the need to clearly address the question. 'Which physical examination tests provide clinicians with the most value for diagnosis when examining the shoulder?'

Since 2006, there have been many changes necessitating an update of the original article. First and foremost, the publication of diagnostic articles on the use of ShPE tests in the clinical examination has continued at a brisk pace resulting in numerous new publications on the accuracy of established tests and the development of new tests. Next, the methodology by which a systematic review on diagnostic accuracy is conducted has been updated from the Quality of Reporting of Meta-analysis (QUOROM)⁸ with the publication of Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA).⁹ Third, the criterion standard method of performing a meta-analysis has become a unification¹⁰ of the bivariate model¹¹ and the hierarchical summary receiver operating characteristic (HSROC) model.¹² Finally, the method by which the quality of individual studies is examined has been updated from the original Quality Assessment of Diagnostic Accuracy Studies (QUADAS)¹³ to the newly published QUADAS-2.¹⁴ These changes over the last five years have been extensive but the goal with this systematic review and meta-analysis has remained the same: to analyse the literature on ShPE tests of the shoulder to careful analysis in order to determine their clinical utility in adult (18 or older) patients.

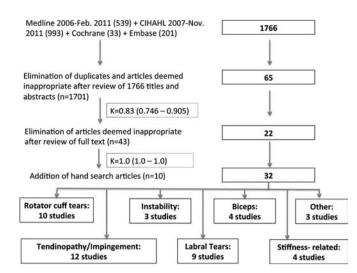
METHODS

This systematic review with meta-analysis was conducted and reported according to the protocol outlined by PRISMA⁹ using a research question framed by PICOS methodology. PICOS is a pneumonic representing population (eg, adults), intervention (eg, diagnostic test), comparison (eg, control group), outcome (eg, accuracy) and study design (eg, cohort). In order to be eligible for this review, diagnostic accuracy studies, written in English, had to report both the sensitivity and specificity of ShPE tests in adults with shoulder pain due to musculoskeletal pathology. Excluded from this review, were articles using equipment or devices that are not readily available to most clinicians during physical examination and articles in which subjects were tested under anaesthesia or in which subjects were cadavers.

Study selection

Since this review is an update of our previous work,¹ the terms in our Medline and CINAHL search strategies remained the same with the exception that the search was confined to the dates November, 2006 through February, 2012. Our previous study dates were 1966 - October, 2006. Further, the original search was expanded, without date restrictions, to include two new databases: EMBASE and the Cochrane Library. A hand search was also conducted which included the authors' private collections and the searching of previous systematic reviews. Two authors (EH and AW) read titles and abstracts of all database-captured articles applying the a priori inclusion/ exclusion criteria and agreement was measured using the κ statistic (figure 1). Disagreement was then resolved by discussion between the two authors and, in the event that agreement could not be reached, a third author (CC) served as the deciding vote. With the remaining articles, the same two authors (EH and AW) read the entire paper and again, a κ value was calculated to measure agreement as to which articles to retain for final analysis (figure 1). Once the final group of 32 articles was determined, 2x2 table data were extracted and saved for meta-analysis. Only data from studies, where the 2x2 data were reported or could be inferred from stated positive likelihood ratios, negative likelihood ratios, positive predictive values, and negative predictive values were retained for metaanalysis. If 2x2 data could not be discerned, the article was excluded from meta-analysis but still retained for systematic review and qualitative analysis.

Quality assessment


Once the final group of articles was agreed upon, two authors (EH and AW) independently examined the quality of each article using the QUADAS-2 tool.¹⁴ QUADAS-2 is a 4-phase tool, the last phase of which assists authors of systematic reviews in rating: 1) bias and 2) applicability. The risk of bias is assessed in four key areas: patient selection, index test, reference standard, and flow and timing. Concern for applicability is assessed in three key areas: patient selection, index test, and reference standard. For both categories, risk of bias and concern for applicability, the individual criteria were classified as low risk, high risk, or unclear and the results were presented using tables from the QUADAS web site (www.quadas.org).

Statistical analysis

In order to maximise the potential for meta-analysis, we added 2x2 data from our first meta-analysis¹ to data gathered from the 32 additional articles included in this review. Hierarchical summary receiver operating characteristic (HSROC) curve¹² and bivariate¹¹ models were used to combine estimates of sensitivity (SN), specificity (SP), positive likelihood ratios (+LR), negative likelihood ratios (-LR) and diagnostic OR (DOR) with their 95% CI. Sensitivity measures the proportion of actual positives which are correctly identified as such (eg, the percentage of sick people who are correctly identified as having the condition). Specificity measures the proportion of negatives which are correctly identified (eg, the percentage of healthy people who are correctly identified as not having the condition). Positive likelihood ratio (LR+) dictates how much the odds of the disease increase when a test is positive.¹⁵ The negative likelihood ratio (LR-) dictates how much the odds of the disease decrease when a test is negative.¹⁵ Diagnostic OR express the strength of association between the test result and disease. These models, in the absence of covariates, are different parameterisations of the same $model^{10}$ and take into account the correlation between sensitivity and specificity and both the within and the between study variances.¹⁶ The 95% prediction region is graphically provided which is the given probability (ie, 95%) of including the true sensitivity and specificity of a future study.¹⁷ DerSimonian-Laird¹⁸ random-effects models were used where less than four studies were eligible for statistical pooling. Heterogeneity was explored graphically with forest plots and statistically with Cochrane-Q with p<0.10 to indicate significant heterogeneity. When appropriate, meta-regression or subgroup analysis using study level characteristics was used to explore heterogeneity with a p<0.10 to indicate a significant difference in stratified estimates. A p value of <0.10 was decided upon to determine a significance in stratified estimates due to the low power of the test used to detect differences in stratified estimates. $^{19}\ A$ 0.5 was added to all four cells of the 2x2 table when a zero was encountered in any cell as suggested by Cox.²⁰

Publication bias was analysed statistically with the Egger²¹ test with a p<0.05 to indicate significant publication bias. Threshold effects were tested using Spearman correlation coefficients.²² Influential studies on summary estimates were assessed with Cooks-d and standardised residuals according to Rabe-Hesketh²³ with sensitivity analyses to determine if influential studies should be removed from the analyses. All statistical analyses were conducted in Stata 11 (Stata, College Station Texas, USA) by one of the authors (AG).

Reviews

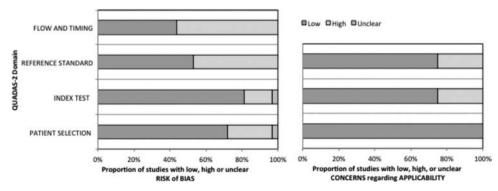
Figure 1 Flow diagram of the literature screening process. Note that the total of articles broken down into subgroups does not equal 32 because multiple articles addressed more than one pathognomonic category. This figure is only reproduced in colour in the online version.

RESULTS

New Studies/Tests/Pathologies

In reference to our previous meta-analysis,¹ there were 32 new studies addressing the diagnostic accuracy of ShPE tests of the shoulder in adults (figure 1). A summary of the characteristics of each study is presented in table 1.

Twelve of these studies^{26 28 29 35 38 39 45-49 53} added 13 new tests to the literature, the majority of which attempted to detect a SLAP lesion. New tests were defined as those for which diagnostic accuracy statistics were reported for the first time in peer-reviewed literature. Clinically, many of these tests are not new. The 32 studies addressed the categories of: Rotator cuff tears (RCT's), Tendinopathy, Subacromial impingement, Instability, Labral tears, Biceps pathology, Stiffness-related disorders and Other. The most frequent topics of focus were RCTs, Tendinopathy, Subacromial impingement and Labral tears. Many would consider tendinopathy and impingement different labels for the same syndrome and further, that both labels capture a continuum of disease that includes RCTs. We concur with this thought but separated these pathologic entities in order to simplify analysis. Therefore, the rotator cuff tear group included those studies where diagnostic accuracy was examined inclusive of any size of tear or classification system used. Three studies^{25 30 33} in the RCT category addressed full-thickness tears, one study³⁹ addressed massive RCTs, and


six studies^{41 42 46 52–54} addressed RCT's regardless of size or classification. Of the 10 RCT studies, five used tests designed to test specific, individual muscles of the rotator cuff. An example of this methodology was the Kim *et al*⁴² study that examined the accuracy of the empty can for supraspinatus pathology, Patte's test for infraspinatus tendinopathy, and the lift-off for subscapularis tendinopathy (and Yergason's test for biceps tendinopathy).

There were some trends observed in categories other than RCTs. In the labral tear group, two studies examined the use of tests to detect any labral tear, while six studies addressed superior labral anterior to posterior (SLAP) lesions and one study³⁷ addressed both labral tears generally and SLAP lesions specifically. Of the three studies in the Instability category,²⁹ ^{37 39} one³⁹ addressed soft tissue-related instability and two²⁹ ³⁷ addressed bony instability, a pathology attracting increased attention since our last review. The Stiffness-related group included studies addressing either glenohumeral OA or adhesive capsulitis. Two studies^{28 39} in this category actually used the same data for the shrug sign and published that data in two separate papers. All three of the stiffness-related papers²⁸ ^{39 48} addressed adhesive capsulitis, another new pathology in the diagnostic literature since our last review. Finally, the Other category consists of two articles^{38 39} on detecting acromioclavicular (AC) pathology and one addressing bony abnormality.47

The sensitivity and specificity of most ShPE tests examined in all 32 studies and the risk of bias in each study are summarised in table 2. In the interest of efficient reporting, test data was omitted from table 2 if diagnostic accuracy figures were reported for pathologies which the test was never intended to detect. For example, if an author reported values for the lift-off test (subscapularis) in a population with adhesive capsulitis, that data were not reported.

Quality assessment – risk of bias and concern for applicability

Each of the 32 papers qualifying for final review was scrutinised, via the QUADAS-2 (Q2),¹⁴ in the areas of risk of bias and concern for applicability (Appendix). Concern for applicability, for this review, was defined as concern for external validity, the degree to which results of a research study can be applied to practice. The two authors (EH and AW) independently used the Q2,¹⁴ blinded from each other's assessments. The number of low risk/concern scores was tallied into a total score for each article and agreement was calculated using a weighted κ statistic. The weighted κ was poor (κ =0.31 with 95% CI 0.10 to 0.52). Summaries of risk of bias and concern for applicability for each pathological group are presented in figure

Figure 2 Risk of bias and concerns for applicability. Green=low risk/concern; Orange=high risk/concern; Blue=uncertain risk/concern. This figure is only reproduced in colour in the online version.

Lead author.	Mean age vears	Mean symptom		Criterion				
year	(range)	duration	Study design	standard	ShPE test	LR±	LR-	Author conclusions
Michener ²⁴	40.6 (18–83)	33.8 months	Prospective blinded	Arthroscopy	Hawkins-Kennedy	1.63	0.61	The single tests of painful arc, external rotation resistance, and Neer
			study		Neer	1.76	0.35	are useful screening tests to rule out SAIS (subacromial impingement
					Painful arc	2.25	0.38	syndrome). The reliability of all tests was acceptable for clinical use.
					Empty can	3.90	0.57	Based on reliability and diagnostic accuracy, the single tests of the
					Resisted External rotation/	4.39	0.50	painful arc, external rotation resistance, and empty can have the best
					Infraspinatus test			overall clinical utility. The cut point of 3 or more positive of 5 tests can
					3 or more positive tests	2.93	0.34	confirm the diagnosis of SAIS, while less than 3 positive of
NA110-25	EE E (30 0C)	27 E montho	Cono control como		External rotation los aisa	с г	0 8 0	0 tutes out obtio. A nonitive size vesseld second to success the moderate libelihood of
	100-07) 6.66		case-culti ui, saille		Externar lotation lay siyii Drop sign	7.7	0.00	A pusitive sign would appeal to suggest the mouen are inventioud of the encourse of a full thiskness tear but this conclusion is formatic
			double blind		lutornal rotation has sign	2.5 7.7		tite presence or a run-timentess tear but time contenusion is temuous heaved on the amolt commels airse of the aturdy and subcomment winds
			aoane-pillia		แเนลเมตา เอเลเอม เลยู่ จเย็ม	7.0	0.00	based on the sinian sample size of the study and subsequent whe confidence interval
Kim VC26	32.6 (19-54)	NA	Cohort study	Arthroscopy	Passive compression test	5.9	0.21	The passive compression test is a useful and accurate technique for
							1	predicting superior labral tears of the shoulder joint.
Fodor ²⁷	57 (20-84)	NA	Prospective,	Ultrasound	Neer	10.8	0.48	The Hawkins-Kennedy test is the most sensitive test for
			consecutive subjects		Yocum	8.80	0.33	identification of subacromial impingement syndrome, while Neer is
					Hawkins-Kennedy	6.50	0.31	most specific. With 4 (+) tests, the specificity increases and the
					Painful arc	3.40	0.41	sensitivity decreases. No tests were good at distinguishing stages
					4 tests	1.70	0.03	of subacromial impingement.
Jia ²⁸	NA	NA	Retrospective	Arthroscopy	Shrug sign			The shrug sign is a non-specific physical exam sign for shoulder
					Glenohumeral 0A	3.6	0.12	dysfunction and is more commonly associated with glenohumeral
					Adhesive capsulitis	1.90	0.10	0A, adhesive capsulitis, and massive rotator cuff tear.
					Massive RC tear	1.50	0.50	
					Rotator cuff tendinopathy	2.04	0.08	
					FTT RC	1.30	0.72	
Bushnell ²⁹	24 (16–52)	NA	prospective pilot	Arthroscopy	Bony apprehension test for	7.14	0.00	The bony apprehension test can reliably screen for significant
			stuay		Instability			osseous lesions.
Castoldi ³⁰	50.4 (16–89)	NA	Prospective cohort	Arthroscopy	External rotation lag sign	28.00	0.45	The ERLS is highly specific and acceptably sensitive for the
			treatment		(ERLS) – FTT SS	13.86	0.03	diagnosis of full-thickness tears, even in case of an isolated lesion of
					ERLS – FTT SS & IS FBLS – FTT TM	14.29	0.00	the supraspinatus tendon.
Cilve31	55 17 A 271	07 E dave	Dreencetivo	NPI		000	110	The Vacum test was the most consitive for subservanial
ollva	(70-47) CC	sybu c.1e	ri ospecitive	IUINI	Hambine Konnody	0.30	0.65	The rocum test was the most sensitive for subactormal immimum and the Cerber test for subacromial subdeteid
					Yocum	137	0.53	hinpingenterit and the deriver test for subactioninal-subjection hirsitis The Gerher and Patte tests provide the hest diarmostic
					Jobe	1.06	0.87	combo. The maiority of tests showed low specificity.
					Patte	1.50	0.67	
					Gerber	1.36	0.64	
					Resisted abduction	0.73	2.10	
Chew ³²	44 (18–75)	9.8 months	prospective cohort	Ultrasound	Neer	1.60	0.60	Diagnosis of supraspinatus pathology may be accomplished with
					Hawkins-Kennedy	1.30	0.40	a cluster of three tests: age >39, (+) painful arc, self reported
					Cross body adduction	1.90	0.40	clicking or popping.
					Urop arm Full can	3.30	0.8U	
					Fmntv can	1.60	0.30	
					Painful arc	3.70	0.40	
Bak ³³	56 FTT, 38 No tear	13 days	Prospective	Ultrasound	Hawkins-Kennedy	1.04	0.88	BEFORE subacromial lidocaine injection: external rotation lag sign
	(39–75 FTT;		diagnostic study		Neer	0.92	1.14	or drop arm test are indicative of a FTT supraspinatus; negative lag
	19–73 control)				Jobe	1.25	0.62	sign does not preclude a tear.
					Painful arc	100	1.00	AFTER subacromial lidocaine injection: specificity improves and
					Drop arm test	2.41	0.71	sensitivity is reduced for all tests.
					External rotation lag sign	5.00	0.60	
					Intraspinatus drop sign	1.50	0.79	
					internal rotation lag sign	2.38	0./9	

Reviews

Table 1 Summary of studies

Lead author, vear		Mean symptom						
		duration	Study design	Criterion standard	ShPE test	LR±	LR-	Author conclusions
Bartsch ³⁴	58 (SD 11.6)	NA	Prospective,	Arthroscopv	Lift off test	1.90	0.76	Fifteen percent of the subscapularis tears were not predicted
			consecutive subjects		Internal rotation lag sign	1.30	0.64	preoperatively by using all of the tests. The modified BPT and the
					Modified belly press	2.75	0.18	BOS showed the greatest sensitivity. The BOS had the greatest
					test (BPT)			specificity. With the BOS and the modified BPT in particular upper
					Bellv off sign (BOS)	9.67	0.14	subscanularis lesions could be diagnosed preparatively.
Kibler ³⁵	49 (28–64)	NA	Cohort study	Arthroscopy		biceps/SLAP	biceps/SLAP	The upper cut test shows higher levels of clinical utility for the
					Belly press	2.1/.61	0.81/1.13	detection of biceps injuries than traditional tests. The likelihood
					Upper cut	3.38/.49	0.34/1.40	ratio, however, suggest its individual value is moderate. Therefore,
					Bear hug	1.95/.54	0.36/1.98	the upper cut & Speed's tests together provide fairly high clinical
					Yergason's	1.94/.88	0.74/1.05	prediction of arthroscopic biceps pathology. The modified dynamic
					Speed's	2.77/.93	0.58/1.03	labral shear test shows the highest level of clinical utility in the
					Dynamic labral shear test	0.38/31.57	1.54/.29	diagnosis of SLAP tears when compared to any individual tests. The
					Anterior slide	0.64/2.63	1.22/0.64	modified dynamic labral shear test & O'Brien's together show best
					0'Brien's	0.96/3.83	1.02/.47	prediction of SLAP arthroscopic findings.
Chen ³⁶	NA	23 weeks	Prospective,	Ultrasound	Yergason's	1.47	0.87	All three tests are limited by poor sensitivity with respect to biceps
			double-blind		Speed's	1.55	0.63	tendinosis.
					Bicipital groove palpation	2.04	0.60	
Fowler ³⁷	41	35 weeks	Cohort/retrospective	Arthroscopy	Hawkins-Kennedy/RC	2.10	0.60	The diagnostic accuracy of isolated standard shoulder tests in
					tendinopathy			recreational athletes was overall very poor. A positive response
					Relocation/Bankart lesion	6.10	0.20	gained in one of a combination of clinical tests caused test
					Relocation/Hill-Sachs	4.30	0.20	sensitivity to increase substantially in all pathological conditions,
					0'Brien's/labrum	1.05	0.90	with specificity subsequently plummeting.
					0'Brien's/SLAP	1.10	0.80	
					Apprehension/SLAP	1	1	
;					Gerber's/RC tendinopathy	1.9	0.9	
Goyal ³⁸	45 (23–62)	2.8 months	Case-control	Ultrasound	Speed's	4.6	0.34	Sensitivity was good in the clinical diagnosis of supraspinatus
					Resisted abduction	1.43	0.26	lesions and low in other shoulder lesions, especially the
					Resisted external rotation	NA	0.5	infraspinatus and the acromioclavicular joint. Specificity was high
					Resisted internal rotation	26.78	0.26	for lesions of infraspinatus, subscapularis and the acromioclavicular
					Adduction stress	15	0.45	joint. However, it was fairly good for biceps tendon pathology and
								very low for the supraspinatus lesions. Physical exam was unable to
								differentiate rotator cuff tendonitis from tear, and partial-thickness
. 30				-				tears from full-thickness tear.
Jias	NA	NA	Retrospective	Arthroscopy	AC resisted extension	4.8	0.33	The results of shoulder examinations are variable and statistical
					Active compression for SLAP	1.26	0.81	analysis may not demonstrate a substantial improvement on the
					Active compression for Diceps	1 20	010	original observations of Countain.
					tenainopatny Active compression for AC	97.1	0./0	
					inint DA	8 20	0.62	
					Anterior Slide	2.63	0.62	
					Anterior apprehension for			
					glenohumeral instability	14.50	0.44	
					Anterior apprehension for	000		
					anterior instability	18.00	0.29	
					Posterior apprehension	19.00	0.82	
							101	
					renamopatny Cross body for AC joint OA	0.00	1.U4 0.20	
					Dron arm	2.07 2.18	0.39	
					External rotation lag sign for	01.7	2	
					massive RC tear	3.18	0.73	
					External rotation lag sign for			
					RC tendinopathy	0.44	1.11	

Table 1 Continued

Lead author, year	Mean age years (range)	Mean symptom duration	Study design	Griterion standard	ShPE test	LR±	LR-	Author conclusions
					Hawkins-Kennedy for AC joint 0A	0.85	1.18	
					Hawkins Kennedy for biceps tendinopathy	0.89	1.18	
					Lift off for biceps	LLC		
					tendinopathy Lift off for alenohumeral OA	2.55 2.90	0.79	
					Lift off for RC tendinopathy	0.48	1.14	
					Neer for AC joint OA	0.97	1.05	
					Neer for biceps tendinopathy	1.08	0.88	
					Speed's for biceps	1 60	0.75	
					Whimle for monitor DC toor	1 25	c / .n	
					Whipple for RC tendinopathy	1.19	0.61 0.61	
N - 11 - 40				L		<i>c</i> , 0		ть. II II IV
Kelly	(0/-02) /9	Z years	Gross-sectional study Ultrasound	Ultrasound	Neer	0.62	c L	Ine Hawkins-Kennedy test was the most accurate test for
					Hawkins-Kennedy Painful arc of abduction	1.48 0 50	0.5Z 1 A	diagnosing any degree of subacromial impingement syndrome. The most accurate tests for diamosing sub-catagorias of
					Abduction weakness	6C.U 76	1 24	ine most accurate tests for uraginosing sub-categories of impinnement were pain on resisted external rotation and weakness
					Abduction pain	2.21	0.34	during the full can test for presence of subdeltoid fluid, pain on
					External rotation weakness	0.74	1.8	resisted external rotation for partial-thickness tears and the painful
					External rotation pain	3.3	0.74	arc test for full-thickness tears. Overall, physical tests have limited
					Empty can weakness	1.56	0.72	diagnostic value.
					Empty can pain	0.78	1.45	
					Full can weakness	1.79	0.73	
				-	Full can pain	0.46	2.6	
KIM HA ⁺¹	(<i>11–11</i>) 89	1b.1 months	Prospective	Ultrasound	Empty can (SS)	0.64	1.34	Physical examination used for the diagnosis of shoulder pain had
					LITT - 01T (SB) Varrason's /hicans)	0.081	4.67 031	IOW SENSITIVITY AND SPECIFICITY TOT THE DETECTION OF FOTATOF CUTT tendon tears
Kim HA ⁴²	53 (16–75)	10 months	Prospective	Ultrasound	Empty can (SS)	1.3	0.6	Physical examination of the rotator cuff and biceos had low
		0		5	Patte's (IS)	2.3	0.5	sensitivity and specificity in the rheumatoid shoulder joint.
					Lift - off (SB)	1.3	0.7	-
					Yergason's (biceps)	1.3	0.96	
Salaffi ⁴³	58 (23–81)	2 months	Prospective,	Ultrasound	Hawkins-Kennedy	2.15	0.51	The sensitivity was low for the clinical diagnosis of all shoulder
			consecutive subjects		Empty can	1.14	0.85	abnormalities. As calculated through an ROC curve analysis,
					Patte's test	2.43	0.5	the Simple Numeric Pain by SHOulder Test (SNAPSHOT) index
					Lift –off	1.45	0.85	may improve the clinical examination of the paintul shoulder by
					Speed's	7.1	0.66	overcoming the low clinical value of each single maneuver. The
					SNAPSHUI >3	0.1	0.3	SNAPSHUT optimal cut-off point was a score of >3 which increased the snerificity and likelihood ratios considerably
Whalesworth44	10/18 831	34	Droenactiva cabart	Arthroecony	Active compression	0.67	о Б	The combinetion of nonning or catching with a nonitive crank or
	40 (10-00) N4	04		ALUITOSCOPY	Active compression Anterior slide	0.07 238	0.69	me computation of popping of catching with a positive crank of anterior slide result or a nositive anterior slide result with a nositive
					Crank	1.35	0.71	active compression or crank test result suggests the presence of
								a labral tear. The combined absence of popping or catching and a
								negative anterior slide or crank result suggests the absence of a
Schlactar ⁴⁵	1112 841	V N	Retrospective	Arthroscom	Daceiva dietraction taet			labral tear. The nescive distraction test can be used alone at in combo to sid the
			analysis	6doppoint C	(PDT)	8.83	0.5	clinical evaluation and diagnosis of SLAP lesion.
					Active compression test			•
					(ACT)	7.38	0.45	
					Anterior slide test	10.5	0.81	
						-	0.00	

Table 1 Continued

Reviews

Table 1 Co	Continued							
Lead author, year	Mean age years (range)	Mean symptom duration	Study design	Criterion standard ShPE test	d ShPE test	LR±	LR-	Author conclusions
Gillooly ⁴⁶	53 (17–83)	15	Prospective cohort	Arthroscopy	Lateral Jobe test Combined tests*	7.36 4.75	0.21 0.49	The lateral Jobe test had a higher sensitivity than the combined tests (Empty can, strength in ER, and subacromial impingement tests). It is a simple, new technique which can improve the clinical diagnosis of rotator cuff tears, *positive result for the combined tests was taken as weakness on supraspinatus testing, weakness in external rotation and pain on subacromial impingement or a
Adams ⁴⁷	NA	acute	Prospective	X-rays	Olecranon-Manubrium Percussion Sign		0.15	The presence of a normal OMP (olecranon manubrium percussion test) sign does not negate the need for radiographic studies in patients with shoulder injury. The presence of an abnormal OMP
Carbone ⁴⁸	40-50	NA	Retrospective	Codman's criteria, exam &/ or MRI	Coracoid pain test (Adhesive capsulitis)	49.5	0.01	by ranges is the need of appropriate range provine stories. Coracoid pain test is an easy and reliable test for identifying patients with or without adhesive capsulitis.
Ebinger ⁴⁹	49 (14–79)	chronic	Prospective	Arthroscopy	Supine flexion resistance test Speed's Artive commersion	2.6 0.97 13	0.29 1.05 0.21	Regarding type II SLAP lesions, the supine flexion resistance test is more specific than the O'Brien's or Speed's test.
Cook ⁵⁰	45	chronic	Prospective, case- based, case-control	Arthroscopy	Active compression Kim II Dynamic labral shear Speed's	<u>;</u>	0.67 0.85 0.94 0.94	Each of the 5 stand-alone tests and clusters of tests provide minimal to no value in the diagnosis of a SLAP lesion, whether a SLAP-only lesion or a SLAP lesion with or without a concomitant findings reference.
Gill ⁵¹	44 no tear/59 partial tear	NA	Cohort study	Arthroscopy	Lapral tension Palpation Lift off	1.13 2.61 2.51	0.87 0.81 0.81	No single physical examination test can accurately predict the presence of a partial tear of the long head of the biceps tendon.
Kim, E ⁵²	60 (37–83)	>3 months	Prospective	MRI and arthroscopy	Speed s Empty can pain or weakness for RC tear (PTT or FTT) Empty can weakness for RC tear (PTT or FTT) Empty can pain for RC tear (PTT or FTT) Empty can pain and weakness for RC tear (PTT or FTT) Full can weakness for RC tear (PTT or FTT) Full can pain for RC tear (PTT or FTT) Full can pain for RC tear	1.51 1.74 2.62 1.74 2.73 2.73 2.73 2.41 2.41	0.75 0.02 0.34 0.13 0.39 0.39 0.34 0.34	Both the empty can test and full can test were considered to be valuable as screening tests to detect a torn rotator cuff, using the positive signs of pain and weakness separately, in spite of their modest overall accuracy.
Naredo ⁵³	58 (21–77)	12.5 months	Prospective	Ultrasound	Full can pain and weakness for RC tear (PTT or FTT) Empty can pain or weakness, SS tear Empty can pain or weakness, SS tendinopathy Lift-off, SB tendinopathy Patte's, IS tear	3.28 Infinity 1.58 3.1 7.1 7.2	0.50 0.81 0.42 0.6 0.3	The accuracy of clinical diagnosis of periarticular shoulder conditions is low. Physical exam was unable to differentiate rotator cuff tendinitis from tear, and partial thickness tear from full-thickness tear.

Reviews

Table 1 Continued

Lead author, year	Lead author, Mean age years year (range)	Mean symptom duration	Study design	Criterion standard	ShPE test	LR±	LR-	Author conclusions
ltoi ⁵⁴	53 (16–86)	NA	Retrospective case	Arthroscopy	SS tear: Full can pain	1.6	0.4	Pain is not useful in locating the sight of a tear. In patients with
			Series		SS tear. Fuil can weak (\\\\T∕F)	18	032	curi terianiopatriy, ure supraspinatus test is most accurate when internreted with MMT < 5, whereas FRCT (infrasninatus) is most
					SS tear: Fmntv can pain	<u>, c</u>	0.55	incorproted with MMT $< 4+$, and lift-off fast (subscantaris) most
					SS tear: Empty can weak	2		accurate with MMT <3
					(MMT<5)	1.5	0.3	
					IS tear: External rotation			
					strength test pain	1.17	0.9	
					IS tear: External rotation			
					strength test weak < 5	1.8	0.3	
					SB tear: Lift-off test pain	1.5	0.8	
					SB tear: Lift-off test weak <5	1.9	0.4	
0h ⁵⁵	Mid 40's (17-mid	NA	Retrospective case	Arthroscopy	Biceps groove tenderness	1.7	1.1	No test had a high sensitivity and high specificity; no combination
	70's)		control study		Speed's	1.06	-	of 2 tests yielded sensitivity/specificity of more than 60%.
					Yergason	0.92	1	Combinations of 2 sensitive tests (O'Brien's, Anterior apprehension,
					Relocation	0.96	-	Compression rotation) and 1 specific test (Speed's, Yergason,
					Compression-rotation	1.3	0.72	biceps load II) increased the diagnostic accuracy. Requiring 1 of 3
					Active compression	1.3	0.7	tests to be positive, will result in a sensitivity of \sim 75%, whereas all
					Kibler	0.7	1.1	3 positive results in a specificity of \sim 90%.
					Biceps load II	1.4	0.9	
					Anterior apprehension	1.1	0.9	
					Whipple	1.1	0.8	

I AC, acromioclavicular; FTT, full-thickness tear; IS, infraspinatus; MMT, manual muscle test; NA, not available; OA, osteoarthritis; PTT, partial-thickness tear; RC, rotator cuff; SB, subscapularis; SLAP, superior labrum anterior posterior; SS, supraspinatus; TM, teres minor.

Table 2 Alphabetical list of common shoulder physical examination (ShPE) tests

Test name(s)	Pathology	Lead Author	Sensitivity	Specificity	Risk of Bias* fro QUADAS 2
AC Resisted Extension	AC Joint OA	Jia ³⁹	72	85	High
Active Compression/O'Brien	SLAP	Cook ⁵⁰	91	14	Moderate
•	SLAP	Schlecter ⁴⁵	59	92	Low
	SLAP	Ebinger ⁴⁹	94	28	Low
	Type II SLAP	Oh ⁵⁵	63	53	Low
	SLAP	Jia ³⁹	53	58	High
	Labral Tear	Kibler ³⁵	61	84	Low
	Labral Tear	Fowler ³⁷	63	40	High
	SLAP	Fowler ³⁷	64	43	High
	Biceps Tendinopathy	Kibler ³⁵	38	61	Low
	Biceps Tendinopathy	Jia ³⁹	68	46	High
	AC Joint OA	Jia ³⁹	41	95	High
	Labral Tear	Walsworth ⁴⁴	55	18	Low
dduction Stress	AC joint OA	Goyal ³⁸	57	96	High
Interior Slide	Biceps Tendinopathy	Kibler ³⁵	24	62	Low
		Jia ³⁹	50	81	
	Biceps Tendinopathy	Kibler ³⁵			High
	Labral Tear		48	82	Low
	SLAP	Schlecter ⁴⁵	21	98	Low
	Type II SLAP	Oh ⁵⁵	21	70	Low
	Labral Tear	Walsworth ⁴⁴	43	82	Low
pprehension- Anterior	Type II SLAP	Oh ⁵⁵	62	42	Low
	SLAP	Fowler ³⁷	29	70	High
	SLAP	Fowler ³⁷	29	70	High
	Glenohumeral Instability	Jia ³⁹	58	96	High
	Anterior Instability	Jia ³⁹	72	96	High
pprehension- Posterior	Posterior Instability	Jia ³⁹	19	99	High
ear Hug	Biceps Tendinopathy	Kibler ³⁵	79	60	Low
	Labral Tear	Kibler ³⁵	37	32	Low
elly-off	Subscapularis Tendinopathy	Bartsch ³⁴	86	91	Low
elly Press	Biceps Tendinopathy	Kibler ³⁵	31	85	Low
	Labral Tear	Kibler ³⁵	15	75	Low
elly Press (modified)	Subscapularis Tendinopathy	Bartsch ³⁴	80	88	Low
elly Press (resisted)	Subscapularis Tendinopathy	Goyal ³⁸	75	97	High
		Cook ⁵⁰	55	53	Moderate
iceps Load II	SLAP The H SLAP	Oh ⁵⁵			
	Type II SLAP		30	78	Low
ony Apprehension	Bony Instability	Bushnell ²⁹	94	84	Low
ompression-Rotation	Type II SLAP	Oh ⁵⁵	61	54	Low
rank	Labral Tear	Walsworth ⁴⁴	61	55	Low
ross-body	Supraspinatus Tendinopathy	Chew ³²	75	61	Low
	RC Tendinopathy	Jia ³⁹	22	75	High
	AC Joint OA	Jia ³⁹	77	79	High
rop-arm	Supraspinatus Tendinopathy	Chew ³²	24	93	Low
	FTT- Supraspinatus	Bak ³³	41	83	High
	RC Tendinopathy	Jia ³⁹	74	66	High
rop Sign	FTT- Supraspinatus	Bak ³³	45	70	High
	FTT- Supraspinatus/Infraspinatus	Miller ²⁵	73	77	Moderate
ynamic Labral Shear	SLAP	Cook ⁵⁰	89	30	Moderate
ynamic Labral Shear- Modified	Labral Tear	Kibler ³⁵	72	98	Low
ynamie Eabrai Shear- Woumeu	Biceps Tendinopathy	Kibler ³⁵	18	53	Low
mpty Can (pain)	Torn Supraspinatus	Itoi ⁵⁴	78	53 40	
inpry Gali (palli)		Kelly ⁴⁰			Moderate
	Subacromial impingement	Kelly** Kim E ⁵²	52	33	Low
ante Can (escal)	RC Tear		94	46	Moderate
mpty Can (weak)	Torn Supraspinatus	Itoi ⁵⁴	87	43	Moderate
	Subacromial impingement	Kelly ⁴⁰	52	67	Low
	RC Tear	Kim E ⁵²	76	71	Moderate
	Subacromial impingement	Michener ²⁴	50	87	Low
mpty Can (pain or weak)	Supraspinatus Tendinopathy	Chew ³²	83	49	Low
	RC Tear	Kim E ⁵²	99	43	Moderate
	FTT- Supraspinatus	Bak ³³	76	39	High
	Supraspinatus Tear	Naredo ⁵³	19	100	Moderate
	Supraspinatus Tendinopathy	Kim HA ⁴²	72	45	High
	Supraspinatus Tendinopathy	Kim HA ⁴¹	31	52	Low
	Supraspinatus Tendinopathy	Fodor ²⁷	50	83	Moderate
	Supraspinatus Tendinopathy	Salaffi ⁴³	56	51	Moderate
		Naredo ⁵³	56 79		
	Supraspinatus Tendinopathy			50	Moderate
	Supraspinatus Tendinopathy	Goyal ⁴⁸	90	37	High
mpty Can (pain and weak)	Subacromial impingement	Silva ³¹	74	30	Low
	RC Tear	Kim E ⁵²	71	74	Moderate
ull Can (pain)	Torn Supraspinatus	Itoi ⁵⁴	80	50	Moderate
	RC Tear	Kim E ⁵²	71	32	Moderate
	Subacromial impingement	Kelly ⁴⁰	35	25	Low

Table 2 Continued

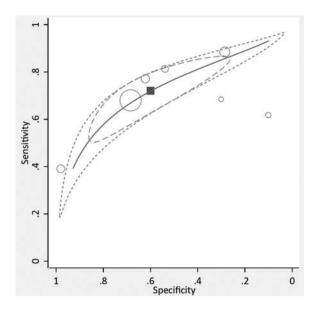
Test name(s)	Pathology	Lead Author	Sensitivity	Specificity	Risk of Bias* fro QUADAS 2
Full Can (weak)	Torn Supraspinatus	Itoi ⁵⁴	83	53	Moderate
	RC Tear	Kim E ⁵²	77	32	Moderate
	Subacromial impingement	Kelly ⁴⁰	45	75	Low
ull Can (pain or weak)	Supraspinatus Tendinopathy	Chew ³²	75	68	Low
	RC Tear	Kim E ⁵²	90	54	Moderate
ull Can (pain and weak)	RC Tear	Kim E ⁵²	59	82	Moderate
External Rotation Lag Sign	Massive RC Tear	Jia ³⁹	35	89	High
Aternal notation Lag Sign	FTT- Supraspinatus	Bak ³³	45	91	High
	FTT- Supraspinatus	Castoldi ³⁰	45 56	98	Low
		Castoldi ³⁰			
	FTT- Infraspinatus		97	93	Low
	FTT- Teres Minor	Castoldi ³⁰	100	93	Low
	RC Tendinopathy	Jia ³⁹	7	84	High
	FTT- Supraspinatus/Infraspinatus	Miller ²⁵	46	94	Moderate
awkins-Kennedy	Supraspinatus Tendinopathy	Chew ³²	87	32	Low
	FTT- Supraspinatus	Bak ³³	77	26	High
	Subacromial impingement	Kelly ⁴⁰	74	50	Low
	Subacromial impingement	Michener ²⁴	63	62	Low
	Subacromial impingement	Silva ³¹	74	40	Low
		Fodor ²⁷	72	89	Moderate
	Subacromial impingement	Salaffi ⁴³			
	Subacromial impingement		64	71	Moderate
	RC Tendinopathy	Fowler ³⁷	58	72	High
	AC Joint OA	Jia ³⁹	47	45	High
	Biceps Tendinopathy	Jia ³⁹	55	38	High
ternal Rotation Lag Sign	Subscapularis Tendinopathy	Bartsch ³⁴	71	60	Low
5 5	FTT- Supraspinatus	Bak ³³	31	87	High
	Subscapularis Tear	Miller ²⁵	100	84	Moderate
abral Tension	SLAP	Cook ⁵⁰	28	76	Moderate
ateral Jobe	RC Tear	Gillooly ⁴⁶	81	89	Low
ft-off	Partial Biceps Tear	Gill ⁵¹	28	89	Low
	Biceps Tendinopathy	Jia ³⁹	28	89	High
	Subscapularis Tendinopathy	Bartsch ³⁴	40	79	Low
	Subscapularis Tendinopathy	Naredo ⁵³	50	84	Moderate
	Subscapularis Tendinopathy	Kim HA ⁴²	69	48	High
	Subscapularis Tendinopathy	Kim HA ⁴¹	6	23	Low
	Subscapularis Tendinopathy	Salaffi ⁴³	35	75	Moderate
		Silva ³¹			
	Subacromial impingement		68	50	Low
	RC Tendinopathy	Fowler ³⁷	19	90	High
	Glenohumeral OA	Jia ³⁹	29	90	High
	RC Tendinopathy	Jia ³⁹	10	79	High
eer	Supraspinatus Tendinopathy	Chew ³²	64	61	Low
	FTT- Supraspinatus	Bak ³³	60	35	High
	Subacromial impingement	Kelly ⁴⁰	62	10	Low
	Subacromial impingement	Michener ²⁴	81	54	Low
	Subacromial impingement	Silva ³¹	68	30	Low
	Subacromial impingement	Fodor ²⁷	54	95	Moderate
	AC Joint OA	Jia ³⁹	57	41	High
	Biceps Tendinopathy	Jia ³⁹	64	41	High
ecranon Manubrium Percussion	Bony Abnormality	Adams ⁴⁷	84	99	Low
ainful Arc	Supraspinatus Tendinopathy	Chew ³²	71	81	Low
	Subacromial impingement	Kelly ⁴⁰	49	33	Low
	Subacromial impingement	Michener ²⁴	49 75	67	Low
	1 5				
	Subacromial impingement	Fodor ²⁷	67	80	Moderate
	FTT- Supraspinatus	Bak ³³	96	4	High
alpation- biceps	Biceps Tendinopathy	Chen	57	74	Low
	Partial Tear- Biceps	Gill ⁵¹	53	54	Low
	Type II SLAP	Oh ⁵⁵	27	66	Low
alpation-coracoid	Adhesive Capsulitis	Carbone ⁴⁸	96	87	High
assive-Abduction (pain)	Subacromial impingement	Silva ³¹	74	10	Low
ssive Compression	SLAP	Kim YS ²⁶	82	86	Low
assive Distraction	SLAP	Schlecter ⁴⁵	53	94	Low
atte	Subacromial impingement	Silva ³¹	58	60	Low
	Infraspinatus Tendinopathy	Kim HA ⁴²	63	73	High
	Infraspinatus Tendinopathy	Salaffi ⁴³	62	74	Moderate
	Infraspinatus Tendinopathy	Naredo ⁵³	71	90	Moderate
		Naredo ⁵³	36	95	
-la -ation	Infraspinatus Tear	Oh ⁵⁵			Moderate
elocation	Type II SLAP		44	54	Low
	Bankart lesion	Fowler ³⁷	79	87	High
	Hill-Sachs Lesion	Fowler ³⁷	81	81	High
esisted- Abduction (pain)	Subacromial impingement	Kelly ⁴⁰	55	75	Low
esisted-Abduction (weak)	Subacromial impingement	Kelly ⁴⁰	38	50	Low
Soloton Abduotion (Weak)	Subacromial impingement	Silva ³¹		20	
		Silva	58	20	Low

Table 2 Continued

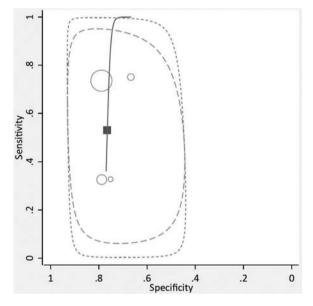
Test name(s)	Pathology	Lead Author	Sensitivity	Specificity	Risk of Bias* from QUADAS 2
Resisted-External Rotation/	Subacromial impingement	Kelly ⁴⁰	33	90	Low
Infraspinatus test (pain)	Torn Infraspinatus	Itoi ⁵⁴	46	54	Moderate
	Infraspinatus Tendinopathy	Goyal ³⁸	50	100	High
	Subacromial impingement	Michener ²⁴	56	87	Low
Resisted-ER/Infraspinatus test (weak)	Subacromial impingement	Kelly ⁴⁰	55	25	Low
	Torn Infraspinatus	Itoi ⁵⁴	84	53	Moderate
Resisted-Lift-off (pain)	Torn Subscapularis	Itoi ⁵⁴	46	69	Moderate
Resisted-Lift-off (weak)	Torn Subscapularis	Itoi ⁵⁴	79	59	Moderate
Shoulder Shrug	Glenohumeral OA	Jia ²⁸	91	57	Low
-	Adhesive Capsulitis	Jia ²⁸	95	50	Low
	RC Tendinopathy	Jia ³⁹	96	53	Low
	Massive RC Tear	Jia ²⁸	75	50	Low
Speed	SLAP	Cook ⁵⁰	28	76	Moderate
	Type II SLAP	Oh ⁵⁵	32	66	Low
	Labral Tear	Kibler ³⁵	29	69	Low
	SLAP	Ebinger ⁴⁹	60	38	Low
	Biceps Tendinopathy	Chen ³⁶	63	60	Low
	Partial Tear- Biceps	Gill ⁵¹	50	67	Low
	Biceps Tendinopathy	Kibler ³⁵	54	81	Low
	Biceps Tendinopathy	Jia ³⁹	50	67	High
	Biceps Tendinopathy	Goyal ³⁸	71	85	High
	Biceps Tendinopathy	Salaffi ⁴³	49	76	Moderate
Supine Flexion Resistance	SLAP	Ebinger ⁴⁹	80	69	Low
Upper Cut	Biceps Tendinopathy	Kibler ³⁵	73	78	Low
	Labral Tear	Kibler ³⁵	22	56	Low
Yergason	Biceps Tendinopathy	Chen ³⁶	32	78	Low
5	Biceps Tendinopathy	Kibler ³⁵	41	79	Low
	Biceps Tendinopathy	Kim HA ⁴²	14	89	High
	Biceps Tendinopathy	Kim HA ⁴¹	75	81	Low
	Labral Tear	Kibler ³⁵	26	70	Low
	Type II SLAP	Oh ⁵⁵	12	87	Low
Yocum	Subacromial impingement	Silva ³¹	79	40	Low
	Subacromial impingement	Fodor ²⁷	70	92	Moderate
Whipple	Type II SLAP	0h ⁵⁵	65	42	Low
EL -	RC Tendinopathy	Jia ³⁹	80	33	High
	Massive RC Tear	Jia ³⁹	100	26	High

*Bias: High= score of high risk of bias in 3 or 4 of total 4 categories; Moderate = score of high risk of bias in 2 of total 4 categories; Low = score of high risk of bias in 0 or 1 of total 4 categories. The 4 categories are: 1. Patient selection 2. Index test 3. Reference standard 4. Flow and timing.

AC, acromioclavicular; ER, external rotation; OA, osteoarthritis; RC, rotator cuff; SLAP, superior labrum anterior to posterior.


2. The greatest risk of bias was most often associated with the Q2 items Patient Flow and Reference Standard. The greatest concern in the category of applicability was also the reference standard with the addition of the index test. Patient flow concerns become apparent when there was an indeterminate or excessive time between the issuing of the index test and the criterion standard, when patients received different reference standards, or when it was difficult to discern if all patients were included in the analysis. Most of the studies, where patient flow was an issue failed to note the length of time between the index test and reference standard, or did not make clear whether all patients were included in the analysis. Often, there was an inability to reconstruct the 2x2 tables accurately from the data reported in the original article. The concern for bias in the reference standard was most often due to a failure to use a double blind design (issuer of the criterion standard was not blinded to index test result) or the failure to use the criterion standard to confirm diagnosis. The obvious gain in popularity of diagnostic ultrasound (n=12 studies in this review) had the deleterious effect of increasing concern for bias since ultrasound is not the criterion standard for shoulder diagnosis.^{56–58} Lastly, the concern for applicability as it relates to the index test is because the authors failed to describe the index test.

Statistical analysis Overall


Publication bias was not found to be evident with graphical or in statistical analysis. However, publication bias cannot be completely ruled out since these tests have decreased statistical power when analysing less than 10 studies.⁵⁹ No significant negative correlations were found to indicate the influence of threshold effects. Table 3 presents the results of meta-analysis for the individual ShPE tests by diagnosis, number of studies and sample size for the analyses.

Subacromial impingement

The Neer, Hawkins-Kennedy and painful arc tests for subacromial impingement were summarised for their diagnostic properties and associations. The strongest summary sensitivity was for the Hawkins-Kennedy test (0.80; 0.72, 0.86). However, the value was merely on the sensitivity threshold (80%) for assisting in ruling out subacromial impingement but because of poor specificity, the LR- value shows this test to have little effect on post-test probability to rule out subacromial impingement when negative. In fact, none of the three diagnostic tests demonstrated the likelihood ratios that would be unlikely to result in important changes in post-test probability. The pooled DOR

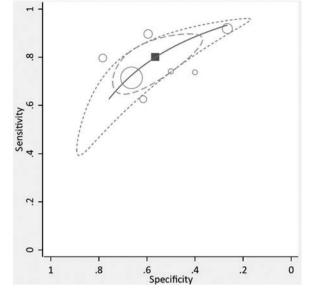

Figure 3 Hierarchical summary receiver operating characteristic (HSROC) curve composed of studies examining the diagnostic value of the Neer test in cases of subacromial impingement. This figure is only reproduced in colour in the online version.

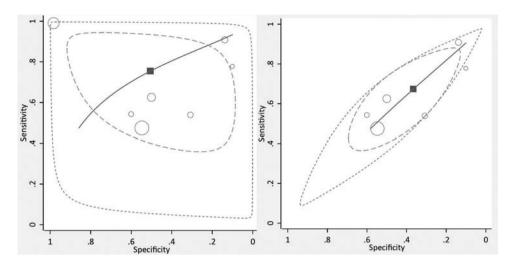
Figure 5 Hierarchical summary receiver operating characteristic (HSROC) curve composed of studies examining the diagnostic value of the Painful Arc test in cases of subacromial impingement. This figure is only reproduced in colour in the online version.

for any of these three tests indicates the discriminative diagnostic ability to determine a positive test result among those with subacromial impingement when compared with those without subacromial impingement is unlikely to occur. Figure 3 (Neer), figure 4 (Hawkins-Kennedy) and figure 5 (painful arc) illustrate the included studies with both the 95% confidence and prediction regions indicating the probable wide variability of the true sensitivity and specificity in future studies.

Meta-regression was conducted for both the Neer and Hawkins-Kennedy tests in order to determine if the summary DOR was biased as a result of differing reference standards. For the Neer test, there was a substantially greater DOR among the studies which used the gold standard of surgery for index test confirmation (4.85 ((95% CI 3.46 to 6.79)) than other reference

Figure 4 Hierarchical summary receiver operating characteristic (HSROC) curve composed of studies examining the diagnostic value of the Hawkins-Kennedy test in cases of subacromial impingement. This figure is only reproduced in colour in the online version.

standards (1.28 ((95% CI 0.31 to 5.19)). The ratio of DORs was strong (3.79 ((95% CI 0.87 to 16.14)) and the stratified estimates were statistically significant (p=0.07). Similarly, the DOR for the Hawkins-Kennedy test was stronger among those studies with the gold standard of surgery (6.41 ((95% 3.33 to 12.35) than for studies using other than the gold standard (3.14 ((95% 1.37 to 7.22))). However, the stratified estimates were not significantly (p=0.18) different from one another.


SLAP lesions

None of the 8 ShPE tests for which meta-analysis was possible (table 3) demonstrated sensitivity values that would likely rule out a SLAP lesion with a negative test. Yergason's test had the strongest summary specificity (95.3; 90.6,98.1), but again, the sensitivity was so poor that the LR+ demonstrates insignificant ability of this test to rule in a SLAP lesion when positive. All eight diagnostic tests for a SLAP lesion had likelihood ratios and DORs that were weak and their CI contained the null value (table 3).

The active compression test analysis found the O'Brien *et al*⁶⁰ study to have a large Cooks-D and standardised residuals influencing the summary estimates. Cooks-D is a measure of the influence that a particular study may have on the model parameters and can be used to check for particularly influential studies. Sensitivity analysis, with removal of the O'Brien *et al*⁶⁰ study, resulted in substantial attenuation of the DOR from 3.14 (95% CI 0.42 to 23.40) to 1.19 (95% CI 0.76 to 1.86). As such, this study was not included in summary estimates for the Active Compression test. Figure 6 illustrates the HSROC curves of the Active Compression test both with and without the outlier study.⁶⁰

Anterior instability

Statistical pooling was done individually for three tests for the diagnosis of anterior instability: the apprehension, relocation and surprise tests. The surprise test demonstrated the strongest sensitivity (81.8; 69.1, 90.9), and therefore, negative likelihood ratio (0.25; 0.08–0.78)) that would likely rule out anterior instability when negative. All three tests demonstrated the ability to rule in anterior instability due to strong specificity.

Figure 6 Hierarchical summary receiver operating characteristic (HSROC) curve composed of studies examining the diagnostic value of the Active Compression test in cases of a SLAP lesion. The left graph includes the original article reporting on the value of the test and the right graph shows the result of the elimination of this outlier study⁶⁰. This figure is only reproduced in colour in the online version.

Table 3 Summary	estimates from	meta-analysis
-----------------	----------------	---------------

Diagnosis Test	No. Studies Sample Size (n)	SN(95% CI)	SP(95% CI)	+LR(95% CI)	-LR(95% CI)	DOR(95% CI)
Impingement						
Neer*	7(n=946)	0.72(0.60, 0.81)	0.60(0.40, 0.77)	1.79(1.24, 2.58)	0.47(0.39, 0.56)	3.83(2.51, 5.84)
H-K*	7(n=944)	0.80(0.72, 0.86)	0.56(0.45, 0.67)	1.84(1.49, 2.26)	0.35(0.27, 0.46)	5.18(3.64, 7.35)
Painful Arc*	4(n=756)	0.53(0.31, 0.74)	0.76(0.68, 0.84)	2.25(1.24, 4.08)	0.62(0.37, 1.03)	3.66(1.24, 10.81)
SLAP						
Active Compression*	6(n=782)	0.67(0.51, 0.80)	0.37(0.22, 0.54)	1.06(0.90, 1.25)	0.89(0.67, 1.20)	1.19(0.76, 1.86)
Speeds*	4(n=327)	0.20(0.05, 0.53)	0.78(0.58, 0.90)	0.90(0.43, 1.90)	1.03(0.86, 1.23)	0.87(0.35, 2.55)
Anterior Slide*	4(n=831)	0.17 (0.03, 0.55)	0.86(0.81, 0.89)	1.20(0.22, 6.51)	0.97(0.96, 1.36)	1.24(0.16, 9.47)
Crank ^{*†}	4(n=282)	0.34(0.19, 0.53)	0.75(0.65, 0.83)	1.36(0.84, 2.21)	0.88(0.69, 1.12)	1.54(0.75, 3.18)
Yergason's	3(n=246)	12.4(6.60, 20.6)	95.3(90.6, 98.1)	2.49(0.97, 6.40)	0.91(0.84, 0.99)	2.67(0.99, 7.73)
Relocation	3(n=246)	51.6(41.2, 61.8)	52.4(44.0, 60.6)	1.13(0.88, 1.45)	0.93(0.72, 1.20)	1.23(0.72, 2.11)
Biceps Palpation	2(n=114)	38.6(26.0, 52.4)	66.7(52.9, 78.6)	1.06(0.66, 1.68)	0.95(0.74, 1.22)	1.13(0.51, 2.50)
Compression Rotation [†]	2(n=355)	24.5(13.8, 38.3)	78.0(72.9, 82.5)	2.81(0.20, 39.70)	0.87(0.66, 1.16)	3.39(0.15, 74.78)
Anterior Instability						
Relocation [†]	3(n=509)	64.6(54.9, 73.4)	90.2(86.8, 93.0)	5.48(0.56, 53.8)	0.55(0.24, 1.27)	10.64(0.32, 354.10)
Apprehension	2(n=409)	65.6(52.7, 77.1)	95.4(93.3, 97.8)	17.21(10.02, 29.55)	0.39(0.22, 0.68) [†]	53.60(24.29, 118.30
Surprise	2 (n=128)	81.8(69.1, 90.9)	86.1(72.1, 94.7)	5.42(0.96, 30.52) [†]	0.25(0.08, 0.78) [†]	28.10(7.71, 102.45)
Tendinopathy						
H-K	3(n=738)	65.5(60.3, 70.5)	62.8(57.3, 68.1)	1.86(1.47, 2.34)	0.46(0.36, 0.60)	4.68(3.35, 6.53)
Labral Tear	·					
Crank	3(n=187)	57.3(47.2, 67.0)	72.6(61.8, 81.8)	2.44(0.69, 8.59)	0.51(0.21, 1.22)	5.81(0.47, 71.50)

SN= sensitivity, SP=specificity, +LR=positive likelihood ratio, -LR=negative likelihood ratio, DOR=diagnostic odds ratio,

CI=confidence interval, SLAP=....., *HSR0C/Bivariate models and all others use DerSimoninian-Laird random-effects models. †indicates those studies and properties demonstrating significant heterogeneity (p>0.10).

The apprehension test had the strongest positive likelihood ratio (17.2; 10.02, 29.55) and was the only one of the three in which the CI did not contain the null value. The apprehension test had the strongest DOR (53.6; 24.3, 118.3), indicating some evidence for this test's overall diagnostic discriminative performance.

Significant heterogeneity was found in the properties and associations for the relocation test. Subgroup analysis, accomplished by removing the study by Lo *et al*⁶¹ based upon the non-criterion reference standard used, did not improve the overall heterogeneity.

Labral tear

In pooled analyses, the crank test for labral tear demonstrated limited ability to rule in a labral tear with a +LR of 2.4 and specificity of 76%, indicating a likely small change in post-test probability.

Tendinopathy

In pooled analyses, the Hawkins-Kennedy test for tendinopathy demonstrated no evidence for the ability to rule in or out, change post-test probability or have overall diagnostic discriminative performance.

What this study adds

- This is the first meta-analysis to study ShPE tests and use the QUADAS 2 document to assist in the qualitative review and the HSROC/bivariate models for metaanalysis
- There is less optimism that the biceps load II is diagnostic for SLAP lesions
- The belly-off and modified belly press tests may be helpful in diagnosing subscapularis tendinopathy
- The bony apprehension test may help diagnose bony instability
- The olecranon-manubrium percussion test may be useful in a traumatic injury for bony abnormality requiring referral for x-ray
- The passive compression test may be helpful in diagnosing a SLAP lesion
- The modified dynamic labral shear test may be diagnostic of labral tears
- The lateral Jobe test may be useful for diagnosing a rotator cuff tear
- The shrug sign appears to be a sensitive test for stiffness-related disorders (osteoarthritis and adhesive capsulitis) as well as rotator cuff tendinopathy
- The passive distraction test may be able to rule in a SLAP tear if positive

DISCUSSION

This is the first study on diagnostic accuracy of which we know that has incorporated HSROC/bivariate models as the criterion standard during performance of a meta-analysis of ShPE tests. We feel that the use of this criterion standard promotes increased attention on and isolation of studies that demonstrate results dramatically outside others of similar context. Of particular interest, is the dramatic change in both the 95% CI and 95% prediction region of the active compression test for a SLAP lesion when the original study⁶⁰ is eliminated (figure 6). Further, this study⁶⁰ is a good example of the

effect of bias on estimates of diagnostic accuracy given that the publication possesses examples of at least seven kinds of bias. Most notable of these biases, is partial verification bias which has been shown to overestimate the diagnostic accuracy of a test.⁶²

For each diagnostic category, the overall results of this systematic review and meta-analysis indicate that a few tests are helpful to confirm or screen for a given diagnosis. There is a preponderance of evidence about individual physical examination tests that could not be combined for the meta-analysis. For those tests, we have used the diagnostic values and risk of bias from the Q2 to determine which tests are recommended for use as a screen or those recommended as a confirmatory test using the benchmarks of specificity >80%, sensitivity >80%, LR+ \geq 5.0 and LR- \leq 0.20. The list is short, and confidence in the diagnostic accuracy estimates is tenuous.

From the meta-analysis portion of this review, the Hawkins-Kennedy initially appears to be of value in ruling out subacromial impingement when negative. However, the LR- is poor and further, a strong argument can be made that subacromial impingement is not a valuable diagnosis but rather a cluster of diagnoses.⁶³ The diagnosis of subacromial impingement encompasses such a broad range of pathologies, from bursitis to a complete rotator cuff tear,⁶⁴ that a label of subacromial impingement may not help guide treatment.⁶⁵ Yergason's test, used for detection of a SLAP lesion, has high (95%) pooled specificity. However, the sensitivity is so low, that a positive test modifies the post-test probability of detecting a SLAP lesion only a small amount. In a similar perspective to subacromial impingement, authors have argued that tests results for SLAP may be effected by the percentage of different forms of Snyder classifications present within the sample.⁵⁰

Therefore, the only tests that appear to have good clinical utility are the apprehension, relocation, and surprise tests to diagnose anterior instability and these tests are primarily a continuum of the apprehension test. When a patient registers apprehension with this test, the relocation manoeuvre should then decrease apprehension, whereupon, the relocation force is removed causing a surprised reaction (surprise test) by the patient as the apprehension reappears.

While the results of the meta-analysis were, perhaps, not inspiring to the clinician searching for diagnostic answers, there are some individual tests that warrant further investigation.

Table 4	Best [*]	Test Combination	s and Reported	Value for V	Various Pathologies
---------	-------------------	------------------	----------------	-------------	---------------------

Test Combination	Pathology	Lead Author	Sensitivity	Specificity	Positive LR	Negative LR
Passive Distraction and Active Compression	SLAP	Schlecter ⁴⁵	70	90	7.00	.11
Compression-rotation AND Apprehension AND Speed	Type II SLAP	0h ⁵⁵	25	92	3.13	0.82
Anterior Slide AND Crank	Labral Tear	Walsworth ⁴⁴	34	91	3.75	0.73
Apprehension AND Relocation	Labral Tear	Guanche ⁶⁶	38	93	5.43	0.67
Age>39, Painful Arc, Self-report of Popping or Clicking	Supraspinatus Tendinopthy	Chew ³² ≥ 2 positive tests; 3 positive tests	75, 38	81, 99	3.82, 32.20	0.32, 0.63
Age≥65 AND Weakness in ER (Infraspinatus Test) AND Night Pain	RC Tear	Litaker ⁶⁷	49	95	9.84	0.54
Hawkins-Kennedy, Neer, Painful Arc, Empty Can, Resisted ER	Subacromial impingement	Michener ²⁴ ; \geq 3 positive tests	75	74	2.93	0.34
Lift-off and/or Resisted IR	Subscapularis Tendinopathy; Subscapularis Tear	Naredo ⁵³ ; Naredo ⁵³	50, 50	84, 95	3.13, 10.0	0.60, 0.53
Apprehension AND Relocation	Anterior Instability	Farber ⁶⁸	81	98	39.68	0.19

*Best is defined as the highest sensitivity, specificity, or both from the studies with the least bias.

The posterior apprehension test for posterior instability demonstrated a higher specificity and positive likelihood ratio but these values came from a high bias study.³⁹ Another highly specific test, but from a low bias study⁴⁵ is the passive distraction test for a SLAP lesion. This test may rule in a SLAP lesion when positive. Sensitive tests of note are the shoulder shrug sign, for stiffness-related disorders (osteoarthritis and adhesive capsulitis) as well as rotator cuff tendinopathy and the Whipple test for massive rotator cuff tears. However, the diagnostic properties of the Whipple test come from a high bias study.³⁹ Other tests of possible value from high bias studies included the AC resisted extension,³⁹ the resisted belly press,³⁸ and coracoid palpation.⁴⁸ There are six additional tests with higher sensitivities, specificities, or both but caution is urged since all of these tests have been studied only once and more than one ShPE test (ie. active compression, biceps load II) has been introduced with great diagnostic statistics only to have further research fail to replicate the results of the original authors. The belly-off and modified belly press tests for subscapularis tendinopathy, bony apprehension test for bony instability, olecranon-manubrium percussion test for bony abnormality, passive compression for a SLAP lesion, and the lateral Jobe test for rotator cuff tear give reason for optimism since they demonstrated both high sensitivities and specificities reported in low bias studies. Finally, one additional test was studied in two separate papers.^{35 50} The modified dynamic labral shear test, may be diagnostic of labral tears in general, but be sensitive for SLAP lesions specifically.

Looking back to our initial publication and combining that data with the current review certainly expands the clinician's diagnostic arsenal. The external rotation lag sign continues to be recommended as it was in 2008¹ to confirm full-thickness rotator cuff tears of the infraspinatus. The hornblower's sign may be diagnostic of severe degeneration or absence of the teres minor muscle, and the active compression test may have value as a confirmatory test for AC joint pathology when positive due to its high specificity.

Despite some cause for optimism when looking at some of the individual studies and tests, the more prudent method may be to look at clusters or combinations of tests, since that resembles more closely, the way in which most ShPE tests are used in the clinic. Table 4, while not all-inclusive, shows the best test combinations to date for detecting various pathologies.

Unfortunately, even many of these test clusters modify the post-test probability by a small to minimal amount. Of note

in this group of clustered tests is the combination of age>39, painful arc, and self-report of popping and clicking³² and the combination of the apprehension and relocation tests,⁶⁸ both of which produce a large post-test shift toward the diagnoses of supraspinatus tendinopathy, and anterior instability, respectively.

LIMITATIONS

Any review is limited by the quality of studies contained therein. Many of the studies in this review had issues with the reference standard and subject flow and timing. There was clearly a rise in the use of diagnostic ultrasound as a criterion standard, and evidence to supports its use is currently poor.^{56–58} Further, we limited our articles to those in the English language which may make this review more prone to dissemination bias. However, publication bias was not found to be evident with graphical or in statistical analysis. Finally, this is the first meta-analysis on diagnostic accuracy of ShPE tests that was performed using the Q2 document. The original authors piloted the Q2 on five studies and found that reliability varied considerably.¹⁴ Our weighted κ (κ =0.31; 0.10, 0.52) was likewise only fair.

CONCLUSIONS

Based on data from our original review¹ and this update, the use of any single ShPE test to make a pathognomonic diagnosis cannot be unequivocally endorsed due to continued quality issues in publications. Some ShPE tests are beginning to stand the tests of scrutiny and time but there are far more tests that need to be validated in more than one study. Combinations of ShPE tests provide better accuracy, but marginally so. These findings seem to provide support for stressing a comprehensive clinical examination including history and clinical examination. However, there is a great need for large, prospective, well-designed studies that examine the diagnostic accuracy of the many aspects of the clinical examination and what combinations of these aspects are useful in differentially diagnosing pathologies of the shoulder.

Acknowledgements The authors would like to acknowledge Ms Connie Schardt for her invaluable assistance in the search process and the authors from the original paper whose initial work was foundational:S Campbell, A Morin, M Tamaddoni, C T Moorman III.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

▶ References to this paper are available online at http://bjsm.bmjgroup.com

Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests

Eric J Hegedus, Adam P Goode, Chad E Cook, et al.

Br J Sports Med 2012 46: 964-978 originally published online July 7, 2012 doi: 10.1136/bjsports-2012-091066

Updated information and services can be found at: http://bjsm.bmj.com/content/46/14/964.full.html

Inaca	inci	1110	0
These	11101	uu	ᠸ.

References	This article cites 63 articles, 18 of which can be accessed free at: http://bjsm.bmj.com/content/46/14/964.full.html#ref-list-1
Email alerting service	Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Торіс	Articles on similar topics can be found in the following collections
Collections	Editor's choice (137 articles) Degenerative joint disease (150 articles) Musculoskeletal syndromes (298 articles) Labral tears (7 articles) Rotator cuff tears (11 articles) Osteoarthritis (65 articles)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/